Exercise 26

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
\sin (x+y)=2 x-2 y, \quad(\pi, \pi)
$$

Solution

The aim is to evaluate y^{\prime} at $x=\pi$ and $y=\pi$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{gathered}
\frac{d}{d x}[\sin (x+y)]=\frac{d}{d x}(2 x-2 y) \\
{\left[\cos (x+y) \cdot \frac{d}{d x}(x+y)\right]=\frac{d}{d x}(2 x)-\frac{d}{d x}(2 y)} \\
{\left[\cos (x+y) \cdot\left(1+y^{\prime}\right)\right]=(2)-\left(2 y^{\prime}\right)} \\
\cos (x+y)+y^{\prime} \cos (x+y)=2-2 y^{\prime}
\end{gathered}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
{[\cos (x+y)+2] y^{\prime}=2-\cos (x+y)} \\
y^{\prime}=\frac{2-\cos (x+y)}{\cos (x+y)+2}
\end{gathered}
$$

Evaluate y^{\prime} at $x=\pi$ and $y=\pi$.

$$
y^{\prime}(\pi, \pi)=\frac{2-\cos (\pi+\pi)}{\cos (\pi+\pi)+2}=\frac{1}{3}
$$

Therefore, the equation of the tangent line to the curve represented by $\sin (x+y)=2 x-2 y$ at (π, π) is

$$
y-\pi=\frac{1}{3}(x-\pi) .
$$

Below is a graph of the curve and the tangent line at (π, π).

